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ABSTMCT 

We discuss the implementation of multigrid algorithms for the solution 
of partial differentinl equations on a hypercube multiproceuo r. We show 
how the topology of the hypercube fits the data flow of the multigrid'algo- 
rithm, and therefore allows e f f i i n t  puallcl implementations. We present a 
timing model for the execution time which predich accurately experimental 
results obtrined from on an Intel iPSC system. 

1. Introduction. 
The multigrid algorithm is a fast efficient method for solving elliptic partial differential 

equations on rerial computers. The algorithm conrists of "wlving" a series of problems on 8 
hierarchy of grids with different mesh sizes. For many p oblems, one can prove that its -e- 
cution time is asymptotically optimal in that it takes O(n J operations to solve the uations 
corruponqg to an n x n grid [11, p 50-511. No algorithm can do better than 08 since 
there arc n unknowns. Not only is it asymptotically optimal but when properly implemented 
it is competitive with other algorithms on gridn of a modest size [SI. Multigrid is now found 
in many areas of scientific camputation ( sncb as computational fluid dynamics [lo]). Given 
its success on serial computers, it is natural to conrider its performance characteristics on 
parallel machines. 

In this paper, we consider an implementation of the basic multigrid method on a distri- 
buted memory, message passing hypetcabe multiprocessor. It would appear that the map- 
ping of the multigrid algorithm to a mnltiproessor would be as simple as it is for most other 
iterative w l v m  (like the J-bi method). However, the hierarchy of grids in the multigrid 
algorithm complia- the flow of data. This in turn may make it difficult to efficiently map 
the algorithm to parallel m.chines. We illustrate, however, how the hypercube interconnec- 
tion topology "~tnra l ly"  corresponds to the multigrid data flow and thereby makes an 
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efficient parallel implementation possible. Further, it is argued that the multigrid algorithm 
in a certain sense achieves the optimal execution time for solving an elliptic partial differen- 
tial equation on a hypercube. Finally, we present a model of the communication and compu- 
tation for the parallel multigrid algorithm. Using this model, we can predict the performance 
of the multigrid algorithm on a variety of hypercubes as well as analyze variations of the 
basic algorithm. We compare this execution model with our computer implementation of the 
parallel multigrid algorithm on an intel hypercube and find excellent agreement. 

2. Jacobi Method. 
Before considering parallel multigrid, we  briefly outline the Jacobi algorithm which will 

seme as a typical iterative procedure to compare with multigrid. To simplify the description 
we restrict our attention to the Id Poisson equation: uxx = f ( x )  on 0 s x 5 1. The ideas 
extend naturally to other problems and to higher dimensions. We disaetize Poisoon'r equa- 
tion by a central difference approximation on a mesh with spacing h ,  and obtain 

Y ( x i + 1 )  - 2 U ( x i )  + "(xi-1) 

= f ( x i )  f = 1, - - ,n-1 (1) 
h2 

which can be written as 

(2) 
2 

Au=h f 

whereA is an (n-1) x (n-1) matrix, and u and f are n-1 vectors. 
Rewriting equation (1) we get : 

(3) 
2 

u(xi) = [U(X,+~) + U(X+~) - h f(xi)W i = 1, - - - ,n-1 
One Jacobi iteration consists of using an approximate solution u to evaluate the righthand 
sides of equation (3) to obtain a new approximation for each u(xi) .  

One nice aspect of the Jacobi algorithm is that it parallelizes easily. If, for example, 
there are n-1 processors, we can put one grid point per processor and evaluate all n-1 
righthand sides of equation (3) in parallel. In the general case when there are more grid 
points than processors, each processor is responsible for updating a block of contiguous 
points. Notice that to apply the formula each processor needs to know the old values of u at 
the points in its contiguous block as well as the points which border its block. This implies 
that each processor must communicate with the processors that are assigned to points which 
are adjacent to its own points. Thus a processor interconnection which topologically matches 
the difference stencil is sufficient for the parallel Jacobi algorithm. It is well known that 
when a gray code is used to number contiguous regions, this defines a mapping to the hyper- 
cube where adjacent domains are mapped to neighboring processors [4]. Therefore the 
Jacobi iteration can be made to run with high efficiency on the hypercube. 

The major disadvantage of the Jacobi yethod is its slow rate of convergence. For 
Poisson's equation it will typically require O(n ) iterations to converge to the solution for an 
n x n grid of unknowns. It is thii slow rate of convergence that leads us to consider the mul- 
tigrid algorithm. 

3. Multigrid Algorithm. 

algorithm can be found in [l], [7], [8] and [ll]. The basic steps are: 
Only a brief sketch of the multigrid algorithm follows. A detailed description of the 

1. Apply a couple of iterations of a standard iterative method ( for example Jacobi) 

2. Set up a system of equations for the error in ul. 
3. "Solve" these equations for the correction on a coarser grid. 
4. Interpolate the coarse grid correction and add the correction to u1 to define the new 

to produce an approximation : ul. 

approximation. 
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Notice that step 3 involves "aolving" a ret of equations on a coarser grid fo r  which we can 
recursively d the aame algorithm (le. use multigrid to solve this cou~tr set of equations). 
Below we give the skeleton of a computer code for the basic "V cycle" multigrid algorithm 
that we have described [8]. The term level ir used to denote the grid on which we are 
currendy w o r w  011. Level one corresponds to the finest grid. Level two corresponds to the 
n u t  coarser grid, etc. 

proc mdtilrid(i,=Jed,pructu,pwtrdrr) 
{ -1 2 

ii(lerrel=collmrtlevd)thenu=(AA,) h f  
Cke 

for k = 1 to prrrelu do J d ( f , n , l e r c l )  
-FlU=idd(f,n,l-CIJC8idU8l) 
pra/tctraidnrl(lerel?=-,Fom) 
=altigrid(proS,ra,v,lera+ 1 , ~ , p u d 8 x )  
intapol.tt(lnel,v,-m) 
n = n + d m  
for k = 1 to portrrtu do Juobi(f,~,Lcvcl) 

cndii 
1 
The main advantage of multigrid is that it converges in 8 constant (ie. independent of 

the mesh size ) number of iteradons md each iteration mats only a nstant factor more than 
that of Jacobi. For large n, this b considerably better than the O ( I ~  rate of convergence of 
the Jacobi method. 

Let us conrider a parallel implementation of a Id  multigrid algorithm. The basic idea is 
similar to the J d i  algorithm. We assign grid points to different processors using a gray 
code mapping. Spcc i f i iy ,  we Look at the case when there are 1-1 processors and n-1 
unknowns ( where I = 2 ). We look at this cue in detail for two reasons. First, it is less 
complicated than the case when we have many points per processor and a n d  even if n is 
greater than the number of processors on tbe f i i  grid as we continue to form coarser Mds 
eventually the number of points on the coarse grid will be equal to the number of processors. 
In this case we assign one point per processor like in the Jacobi algorithm. The coarse grid is 
defined by taking every other point from the f i e  grid. Notice this implies that we will have 
many idle proceuors on the coarser grids. Let's look at processor I I ~ .  To perform the resi- 
dual projection, interpolation, and Jacobi iterations, this processor has the following com- 
munication needs: 

finest grid level 0 : commmicaks with processon nL2 - 1 and nL2 + 1. 
g r i d l e v e l l : a n n m ~ w i t h p r o c e r r o n n / 2 - ? a n d n , n + 2 ;  
gridleveli:communiatuwithproauonn/2-2 andn/2+ 2. 

Thus the multigrid dpridun requires more sophisticated communication links than Jacobi. 
In other wonk, a simple pmceuor grid whicb matcher the stencil of the partial differential 
equation is not sufficient for an efficient multigrid algorithm. We state without proof the fol- 
lowing malt. If a parddar gray code (specifically the binary reflected gray code ) is d to 
assign grid points to proceuon on a hypercnbe, then the proceuorr that must communicate 
with each other in the multigrid algorithm are at most a distance of two away from each 
other (regardless of the level of the grid and the size of the hypercube). Further, there is a 
simple and efficient algorithm that allows one 60 shuffle the grid points to different proces- 
sors before moving to a different level so that we can maintain communication links of a die  
tance one. We omit the details and refer the reader to [3]. The key point is that by properly 
mapping a problem on a hypercube, our communication needs remain locat no matter how 
coarse the grid is compared to the size of the hypercube. 
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4. A Lower Bound B a d  on Data Flow in Solving PDE'r. 
In this rection, we shall introduce a data flow view of algorithms for solving elliptic 

pde'a and use it to derive a lower bound on the execution for solving such equations on 
hypercube computers. 

The solution of an elliptic pde at any point in the domain requires some knowledge of 
information on the boundary. We know for example that by changing the boundary condi- 
tions we  change the solution inside the domain at all points. Therefore, when we consider 
the convergence of numerical methods to the solution of elliptic problems, we  can get a lower 
bound by determining the time it takes for the boundary information to reach all points in the 
interior. For example, consider the Jacobi method applied to the Id Poisson equation. It 
takes O(n) iterations before this information propagates to all the interior points. Thus a 
low5r bound for the convergence of the Jacobi method is O(n). Note that it actually takes 
O(n ). From this point of view, we can scc why the multigrid algorithm yields such rapid 
convergence. One multigrid iteration propagates the boundary information to all the points in 
the interior. Thus the lower bound on the convergence of multigrid is 0(1) which is the 
actual convergence rate. 

The principle advantage of the hypercube interconnections is that they allow one to effi- 
ciently communicate the boundary information globally. For example, if we have one point 
per processor and the processor f l f2 f3  - - - 1, contains some boundary information, it will take 
log n steps to propagate this information to processor 55s - - - 'fn (where the overhead bar 
denotes complement). Thus we can conclude that the optimal asymptotic time for solving an 
elliptic problem with one point per processor on a hypercube is O(1og n). We shall see in Sec 
5 that the multigrid algorithm achieves this optimal time as it takes O(1og n) time to perform 
one multigrid iteration on a hypercube of size n (see also [2] and [a]). 

The need for efficient global communication is not particular to multigrid. For example, 
any numerical algorithm which requires convergence checking needs to be able to communi- 
cate global information. Notice that convergence checking within the multigrid algorithm can 
be performed with almost no overhead. For example if we use the residuals as a measure of 
convergence, which are already computed in the multigrid algorithm, the norm of the resi- 
dual vector on the finest grid can be accumulated at the coarsest level using a tree sum 
method which can be integrated into the multigrid algorithm. In fact by clever programming, 
the norm of the fine grid residual can be sent in the same messages which are used to 
transmit the residuals on the lower levels. This method implies that convergence will be 
determined after one additional multigrid iteration has been performed. 

5. Modeling Communication and Computation. 
We model the execution time of the parallel multigrid algorithm on a two dimensional 

n x n point grid using a p x p processor grid. The execution of one multigrid iteration con- 
sists of performing the Jacobi SWCCPS, interpolation, residual projection, and "solving" the 
coarse grid equation. There are two separate cases in the parallel multigrid implementation 
which must be analyzed slightly differently. Specifically when n > p ,  each processor has ( 
n/p  x n/p ) points. Thus when we communicate with our nearest neighbor we send messages 
of length n / p .  On the other hand when n < p we have some idle processors and those pro- 
cessors which are not idle contain only one point. So communication with our nearest neigh- 
bor requires messages of length one to be sent. Notice that even if n > p on the fine grid, 
eventually on some level (ie. on some coarse grid) n will be less than p . 

2 We define the following notation: 
T ( n )  : time to perform one multigrid iteration on an n x n grid using p processors. 
a + pn : time to communicate a message of length n between neighboring processors. 
t : time to compute one Jacobi sweep at one point on the grid. 
v : total number of Jacobi sweeps that are performed on each multigrid level 

(ie. prejelax + postrelax). 



t : time to compute the residual at one point. 
p : time to project one point of the residual onto the coarse grid. 
i : time to interpolate from the coarse grid and apply the correction to the previous approximation. 
1y = ut + t + p + i .  The computation time on one level for one point. 

We assume in this analysis that the hypercube has bi-directional simultaneous rend and 
receive. If we count the arithpetic operations for the case n > p , we have: 

2 Jambi sweep : u(z(n/p) + 4(a  + @(Rip))). 

compute d u a l  : r ( d p )  + 4(a + @(RIP)). 

project residual : p(n/p) + 4(a + @(n/p) ) .  

interpolate : i(n/p) + 4(a  + @ ( n p ) )  + 4(a + @). 

interpolate the oorrcction at all ( d p )  points. 

- receive informatiog on all four boundaries and compute new approximation at all ( d p )  points. 

- receive informatip on all four boundaries and compute residual at all (n/p)' points. 

- receive infopation on all four boundaries a d  project residual at all (A@) points. 

- receive information on all four boundyies as well as information on the corners to 

2 

We can now combine there to obtain a recurrence relation for the execution time of the mul- 
tigrid algorithm. For n > p 

T,(n) = Tl(n/L) + Y(dp)z + [4u + 10]8(n/p)+([4u + 16]a + 48). 
For n = p we have the initial condition 

T,(P) = T J P )  
Doing a similar analysis for the cue n S p ( using the Chan-!had shuffle algorithm ) we get : 

T2(n) = T 2 ( a )  + 1y + [20 + 4u](a + 8) 
with initial condition 

T2(2) = c, 
where C, is the time to solve the system corresponding to a 2 x 2 grid with one point per 
processor (and the processors are nearest neighbors). Note these formulas are only valid for 
p > 2 as the assumptions of rending and receiving on four boundaries arc not valid for 
smaller systems. To analyze smaller systems we must modify our assumptions. Solving the 
above recuTrcncc relations we get 

Tl(n)  = (4/3)A4[(n/p)2 - 11 + d,[(n/p) - 1) + d210g(n/p) + T2(p) 

and 

T 2 b )  = ~ 3 l o e w a  + c, 
W h e r e  

d ,  = (8w + 20)@, d2 = (4u + 16)a + 48, d3 = dl + (20 + 4u)(a + 8). 
When the ratio n/p ia we, the fmt term dominates and so Tl(n) (4/3)M(n/p)z. Thug 
when the number of points per processor is large, the m y t i o n  time is reduced by almost p 
which is in fact the maximum attainable speed up on a p node hypercube. Considering the 
optimal nature f rerial multigrid, parallel multigrid can also be considered asymptotically 
optimal O((n/p)\. At the other extreme when A is large and n = p (ie. one point per proces- 
sor), then Tl (n)  = O(1og A). Our previous discussion concluded that O(1og n) is the optimal 
execution time for solving elliptic partial differential equations on a hypercube with one point 
per processor. Thus multigrid is also asymptotically optimal when there is one point per 
processor and a large number of processors. It is interesting to note that this optimal 
behavior is achieved even with the many idle processors that result when "solving" on the 
coarse grids. 
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The results of the preceding paragraph are encouraging, but they do not indicate the 
performance of the parallel multigrid algorithm on practical grid sizes and realistic hyper- 
cubes. Toward this end, we can use the execution model to predict the actual execution of 
the parallel multigrid algorithm under different assumptions. Figure 1 shows the predicted 
runtimes for one multigrid iteration using the machine parameters for both the intel iPSC 
and the Caltech Mark 11 hypercube (using sixteen nodes) for different grid sizes. The values 
for a and B4 were obtained frqm data in [9]. For the Caltech Mark- I1 machine 
a = 8.8 x 10 . The efficiency plots shown in figure 2 indicate how 
large the ratio ( n / p )  must be before we are close to the maximum attainable speedup. For the 
Caltech machine, we see that for n/p =s 16 we reach 80 percent efficizpcy. This is an indica- 
tion that the ratio n/p does not have to be large before we get almost p speed up. 

and B = 8.4 x 10 

10 

I 
i I 

I denotes ow measured execution tlmCI Of One 
multigrid itermnon on an Intel iPSC 

/t 
/ 

flgure 1 : predicted execution time of one multigrid iteration vs. n 
using 16 processors for grids of size n x n 

6. Numerical Expcrimentr. 
A computer code of the parallel multigrid algorithm was implemented on the intel iPSC 

hypercube. This code was used to solve Poisson’s equation ( u, + u = f (x,y) ) on a square 
grid. The Dirichlet boundary Tndigons as well as the function f(x,yrwere chosen so that the 
exact solution was u(x,y) = x + y . In the current version of the multigrid code there is no 
convergence checking. Timing experiments of the parallel multigrid algorithm were run 
using four nodes as well as using sixteen nodes. The processors were assigned to subdomains 
using the binary reflected gray code ( in the x and y directions ). The execution runtimes for 
one multigrid iteration (averaged over a sequence of iterations) of this code on grids of vari- 
ous sizes is shown in figure 1. The close correspondence between the actual runtimes and the 
predicted runtimes is an indication that the execution time model accurately reflects the run- 
times of the parallel multigrid algorithm. 

, 
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- 
64 128 tS6 

0 V 
8 32 

figure 2 : predicted &ciency of one multigrid iteration VJ. n 
using 16 processors for grids of sue n x n 

7. Conclusion. 
It is well known that the multigrid algorithm is among the most effective methods for 

solving elliptic partial differential equations on serial computers. In this paper, we have 
shown that it can be effectively mapped to a hypercube so as to maintain its optimal proper- 
ties. When there are many grid points compared to the number of processors, it is possible 
to attain almost the maximum possible speed. When there are many processors and only a 
few points per processor, the multigrid algorithm is also optimal. Specifically, if the ratio of 
points per processor is fired at one and the number of processors p is varied, the multigrid 
algorithm achieves the asymptotically lower bound, O(1ogp) for solving pde's. This implies 
that for large processor systems multigrid is optimal and that for small processor systems 
where there are many points per processor, multigrid is still optimal. 

To determine estimates of execution times on realistic machines and realistic size prob- 
lems, we presented 8 model of the communication/computation of the multigrid algorithm. 
The accuracy of the model war verified by a comparison with the timing results of our mul- 
tigrid implementation on an Intel iPSC 32 node system. Using the model, it is possible to 
predict the execution time of tbe multigrid algorithm on various hypercubes (ie. with dif- 
ferent machine parameters). h addition, the model can be used to compare the execution 
time of different variants of the algorithm. Our preliminary analysis, illustrates that a paral- 
lel multigrid can be effiaently mapped to a hypercube and therefore execute significantly fas- ' 

ter than on a serial machine. . 
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